
Privacy in Statistics and Machine Learning Spring 2023
Lecture 6: Selection Problems, the Exponential Mechanism, and Report
Noisy Max

Adam Smith (based on materials developed with Jonathan Ullman)

1 The Exponential Mechanism

The Laplace mechanism works well when the computation we want to carry out returns a vector to
which we can add noise, and computation’s global sensitivity is not too high.

What happens when when adding noise to the result makes no sense? The exponential mechanism
is the natural starting point for designing di�erentialy private algorithms.

We’ll motivate the mechanism with two problems, both of which have a “selection” �avor:

Example 1.1 (Approval voting). Suppose we are trying to vote on a name for our course mascot, a
terrier-husky mix who is currently just called “DP Doggie”. We have many names to choose from—
students proposed a total of 𝑑 names. We’ve decided to conduct the election using approval voting (AV):
in “AV”, each voter can vote for as many candidates as they want; the candidate with the most votes
wins. If there are 𝑑 candidates, one can think of each voter’s input as a subset 𝑥𝑖 ⊆ [𝑑]. The score of
candidate 𝑗 is the number of voters who included 𝑗 in their subset, that is, 𝑞(𝑗 ; x) = |{𝑖 : 𝑗 ∈ 𝑥𝑖}|. The
highest-scoring candidate wins.

We wish to run the election di�erentially privately. We won’t necessarily be able to get the exact
winner, though we can hope to learn a name with almost the maximum number of votes (which will be
the same as the true winner unless there is a near-tie). One approach is to use the Laplace mechanism
to release noisy versions of all the scores. But the global sensitivity of the whole list is 𝑑 , and then we
would add noise 𝑑/𝜀 to each score. Can we obtain a name whose score is much closer than 𝑑/𝜀 to the
highest?

Example 1.2 (Prices of a digital good). With a shiny new home microphone, you just recorded “My
Corona”, a parody of The Knack’s 1979 hit song, “My Sharona”. Now you want to sell it online. In
a ma-ma-ma-market study, you talk to 𝑛 people and �nd out the price 𝑥𝑖 ∈ [0, 1] each person would
willing to pay for a download of the song. Assuming that respondents answered truthfully, a reasonable
estimate for the revenue you would get from selling the download at price 𝑝 is

𝑞(𝑝; x) = 𝑝 · # {𝑖 : 𝑥𝑖 ≥ 𝑝} .

You would like to use a di�erentially private algorithm to publish a price 𝑝 ∈ {$0.01, $0.02, . . . $1.99}
such that 𝑞(𝑝; x) is as large as possible.

Adding noise to the best price might not make sense: For example, if everyone had the same
maximum price 𝑥𝑖 = $0.70 for your song, the best price for you to charge would be $0.70. Charging
$0.69 would also be ok (you would still make nearly as much as possible), but charging $0.71 would
result in no one buying your song.

1.1 Selection Problems

These examples share a common structure. They are both special cases of a general selection problem,
speci�ed by:

1

• A set Y of possible outputs;
• A score function 𝑞 : Y ×U𝑛 → R which measures the “goodness” of each output for a data set.
Given x ∈ U𝑛 , our goal is to �nd 𝑦 ∈ Y which approximately maximizes 𝑞(𝑦; x). (When Y is
�nite, we can also think of 𝑞 as a collection of Y separate low-sensitivity queries.)

• A sensitivity bound Δ > 0 such that 𝑞(𝑦; ·) is Δ-sensitive for every 𝑦. That is,

sup
𝑦∈Y

sup
x,x′∈U𝑛

adjacent

|𝑞(𝑦; x) − 𝑞(𝑦; x′) | ≤ Δ . (1)

The table below shows how these parameters work out for our two examples:

Approval Voting Pricing a Digital Good
Possible outputs Y Mascot names {$0.01, $0.02, . . . $1.99}
Score 𝑞(𝑦; x) = . . . Number of votes for candidate 𝑦 𝑦 · # {𝑖 : 𝑥𝑖 ≥ 𝑦}

Maximum Sensitivity Δ 1 1.99

1.2 The Exponential Mechanism

Specifying these three elements—the output spaceY, score function 𝑞(·; ·), and maximum sensitivity Δ—
describes a selection problem. Magically enough, there are generics way to turn these into a di�erentially
private algorithm that solves the selection problem approximately. Two such common approaches are
the exponential mechanism and report noisy max.

The �rst approach, called the exponential mechanism1, is laid out in Algorithm 2. You can think of
it as a template that can be instantiated di�erently, depending on the selection probllem you want to
solve. The idea is that given the score function 𝑞(·; x) that assigns a number to each element 𝑦 ∈ Y, we
de�ne a probability distribution which generates each element in 𝑦 in Y with probability proportional
to exp(𝜀2Δ𝑞(𝑦; x); that is, we sample elements with a probability that grows exponentially with their
score. The symbol “∝” in Algorithm 2 means “proportional to”.

Algorithm 1: Exponential Mechanism 𝐴𝐸𝑀 (x, 𝑞(·; ·),Δ, 𝜀)
Input: Assume that 𝑞(𝑦; ·) is Δ-sensitive for every 𝑦 ∈ Y.

1 Select 𝑌 from the distribution with Pr(𝑌 = 𝑦) ∝ exp
(
𝜀
2Δ𝑞(𝑦; x)

)
;

2 return 𝑌 ;

When is this algorithm even well de�ned? When Y is �nite the algorithm is well-de�ned since we
can set

𝑃 (𝑌 = 𝑦) = 𝑒
𝜀
2Δ𝑞 (𝑦;x)∑︁

𝑦′∈Y
𝑒

𝜀
2Δ𝑞 (𝑦

′;x)
. (2)

In fact, the mechanism makes sense over in�nite domains, and even continuous ones. For ini�nite
discrete domains like the integers Z, it must be that

∑
𝑦∈Y 𝑒

𝜀
2Δ𝑞 (𝑦;x) is �nite for every x. Over continuous

spaces like the real line, it must be that
∫
𝑦∈Y exp

(
𝜀
2Δ𝑞(𝑦; x)

)
𝑑𝑦 is �nite for every possible data set x. We

will see an example further below.
Now that we have a well-de�ned algorithm, we’ll try to understand why it is di�erentially private,

and why it is useful.
1The generic algorithm comes up in many contexts—not just privacy—and is often called the “Gibbs distribution” or “Gibbs

sampler”.

2

Theorem 1.3. If 𝑞 is Δ-sensitive (i.e., satis�es (1)) then the exponential mechanism is 𝜀-di�erentially
private.

Proof. Assume for simplicity that Y is �nite. For any output 𝑦 and data set x we have 𝑃 (𝑦 |x) =

𝑒
𝜀
2Δ𝑞 (𝑦;x)∑

𝑦′∈Y 𝑒
𝜀
2Δ𝑞 (𝑦′;x) . Let x′ be a data set adjacent to x. Since the sensitivity of 𝑞(𝑦; ·) is at most Δ, we have

𝑒
𝜀
2Δ𝑞 (𝑦;x)

𝑒
𝜀
2Δ𝑞 (𝑦;x′)

= exp
(𝜀

2Δ (𝑞(𝑦; x) − 𝑞(𝑦; x
′))

)
≤ exp

(𝜀

2Δ · Δ
)
= 𝑒𝜀/2 (3)

and similarly, for the normalizing constants,∑︁
𝑦′∈Y

𝑒
𝜀
2Δ𝑞 (𝑦

′;x′)

∑︁
𝑦′∈Y

𝑒
𝜀
2Δ𝑞 (𝑦

′;x)
≤ sup

𝑦′

(
exp

(𝜀

2Δ (𝑞(𝑦
′; x′) − 𝑞(𝑦 ′; x))

))
≤ 𝑒𝜀/2 .

Thus the ratio 𝑃𝑟 (𝑦 |x)
𝑃 (𝑦 |x′) is at most 𝑒𝜀/2 · 𝑒𝜀/2 = 𝑒𝜀 . The case of an in�nite domain is similar, with integrals

over to the base measure replacing sums. �

1.3 Utility of the Exponential Mechanism

We now have a very general tool in our toolbox, which can be used to design an agorithm for any
problem where we can assign possible outputs a score according to their desirability. The algorithm is
always di�erentially private.

The question is, when is this approach actually useful? Does it help us address approval voting and
price selection, the two examples problems we started out with?

Just how useful the exponential mechanism is depends a lot on the exact problem structure. But we
can write down a few clean and generally useful bounds. The best we can hope for from a selection
algorithm is that, on input a data set x, it outputs an element 𝑦 ∈ Y with the maximum possible score,
denoted

𝑞max(x)
def
= max

𝑦∈Y
𝑞(𝑦; x) (4)

We’ll show that we can get an element with near-maximum score, with high probability.

Proposition 1.4. Suppose Y is �nite and has size 𝑑 . Then for every Δ-sensitive score function 𝑞, for every
data set x, and every 𝑡 > 0, the output of the exponential mechanism 𝑌 ← 𝐴𝐸𝑀 (x, 𝑞,Δ, 𝜀) satis�es:

P
𝑌←𝐴𝐸𝑀 (x,𝑞,Δ,𝜀)

(
𝑞(𝑌 ; x) < 𝑞max(x) −

2Δ(ln(𝑑) + 𝑡)
𝜀

)
≤ 𝑒−𝑡 , where 𝑞max(x) =

𝑑max
𝑦=1

𝑞(𝑦; x) (5)

In particular, we have

E
𝑌←𝐴𝐸𝑀 (x,𝑞,Δ,𝜀)

(𝑞(𝑌 ; x)) ≥ 𝑞max(x) −
2Δ(ln(𝑑) + 1)

𝜀
. (6)

Proof. Fix a data set x and a score function 𝑞. To make the proof more readable, we’ll drop the x symbol
in the score function, writing 𝑞(𝑦) and 𝑞max instead of 𝑞(𝑦; x) and 𝑞max(x).

We can divide the possible outputs into sets 𝐺𝑡 and 𝐵𝑡 of “good” and “bad” outputs, where

𝐺𝑡 =
{
𝑦 ∈ Y : 𝑞(𝑦) > 𝑞max − 2Δ

𝜀
(ln(𝑑) + 𝑡)

}
and 𝐵𝑡 =

{
𝑦 ∈ Y : 𝑞(𝑦) ≤ 𝑞max − 2Δ

𝜀
(ln(𝑑) + 𝑡)

}
3

To prove the �rst part of the Proposition, we need to show that P (𝐵𝑡) ≤ 𝑒−𝑡 . Let’s write the probability
of an element 𝑦 as P (𝑌 = 𝑦) = 𝐶𝑒

𝜀
2Δ𝑞 (𝑦) , where 𝐶 is the normalizing constant 𝐶 =

∑
𝑦∈Y 𝑒

𝜀
2Δ𝑞 (𝑦) .

Let 𝑦∗ be an output with score 𝑞max. We can bound P (𝐵𝑡) as

P (𝐵𝑡) <
P (𝐵𝑡)
P (𝑦∗) =

∑
𝑦∈𝐵𝑡
P (𝑌 = 𝑦)

P (𝑌 = 𝑦∗) =

∑
𝑦∈𝐵𝑡

exp
(
𝜀
2Δ𝑞(𝑦)

)
exp

(
𝜀
2Δ𝑞max

) (7)

Since the bad𝑦’s satisfy𝑞(𝑦) ≤ 𝑞max− 2Δ
𝜀
(ln(𝑑)+𝑡), the sum in the numerator is at most |𝐵𝑡 | exp(𝜀2Δ𝑞max−

(ln(𝑑) + 𝑡)) and we get that

P (𝐵𝑡) <
|𝐵𝑡 | exp(𝜀2Δ𝑞max − (ln(𝑑) + 𝑡))

exp
(
𝜀
2Δ𝑞max

) = |𝐵𝑡 | · 𝑒− ln(𝑑)−𝑡 ≤ |𝐵𝑡 | ·
1
𝑑
· 𝑒−𝑡 . (8)

Since 𝐵𝑡 contains at most 𝑑 − 1 elements, we get the desired bound on P (𝐵𝑡).
The last part follows from the fact that for any nonnegative random variable 𝑍 , we have E (𝑍) =∫

𝑧≥0 P (𝑍 > 𝑧)𝑑𝑧. Let’s apply this to the random variable 𝑍 = 𝜀
2Δ (𝑞max − 𝑞(𝑌)). The probability that it

exceeds 𝑧 = ln(𝑑) + 𝑡 is at most 𝑒−𝑡 for 𝑡 > 0, and at most 1 for for 𝑡 ≤ 0. So we get

E (𝑍) =
∫ ∞

𝑧=0
P (𝑍 > 𝑧)𝑑𝑧 =

∫ ∞

𝑡=− ln(𝑑)
P (𝑍 > ln(𝑑) + 𝑡)𝑑𝑡 ≤

∫ 0

𝑡=− ln(𝑑)
1𝑑𝑦 +

∫ ∞

𝑡=0
𝑒−𝑡𝑑𝑡 = ln(𝑑) + 1 .

�

Example 1.5 (Approval Voting, continued). Let’s apply our new Proposition to the approval voting
example. The scores there are counts, and have sensitivity 1. Let 𝑞max be the score of the most popular
candidate, and suppose 𝑑 = 100—a reasonable number of candidate names for the mascot—and 𝜀 = 0.5.
Proposition 1.4 shows that with probability at least 0.99, we’ll get a candidate whose score is at most
𝑞max − 2·1

0.5 (ln(100) + ln(1/0.01)) ≈ 𝑞max − 36.8. If the best candidate won by 39 or more votes, we would
get their name with high probability. Compare this with the Laplace mechanism, where scores would be
perturbed by about 𝑑

𝜀
= 200, and the largest perturbation might be far bigger.

Example 1.6 (Pricing a digital good, continued). Let’s return to the problem of setting a price for “My
Corona”. There are 𝑑 =200 possible prices, so we can apply Proposition 1.4 to show that we can get a
price that leads to revenue within about 2Δ(ln(𝑑) + 1)/𝜀 = 2 · 1.999 · ln(200)/𝜀 ≈ 31

𝜀
of the best possible.

In fact, we can get a better bound for this problem. The key idea is that if a price 𝑝 is good, then
the prices slightly less than 𝑝 are also pretty good. We won’t work out the details here, but we will see
exercises which use the idea.

1.4 More Examples of the Exponential Mechanism

The Laplace Mechanism and Randomized Reponse can also be seen—almost—as special cases of the
exponential mechanism:

Laplace Mechanism Randomized Response
Possible outputs Y R𝑑 {0, 1}𝑛
Score 𝑞(𝑦; x) = . . . ‖𝑦 − 𝑓 (x)‖1 #agree(𝑦, x)

Maximum Sensitivity Δ 𝐺𝑆 𝑓 1

4

If you plug the score function 𝑞(𝑦; x) = ‖𝑦 − 𝑓 (x)‖1 directly into the exponential mechanism, you
will sample from the distribution with probability proportional to exp

(
− 𝜀

2 ‖𝑦 − 𝑓 (x)‖1
)
. This is de�nitely

d�erentially private, but it isn’t quite the Laplace mechanism. The actual Laplace mechanism samples 𝑦
with probability proportional to exp (−𝜀‖𝑦 − 𝑓 (x)‖1), e�ectively saving a factor of 2 in the exponent.
Something similar happens with randomized reponse. This occurs because the normalization constants
𝐶x by which one divides to get probability distributions are actually independent of x. The general
exponential mechanism must allow for a varying normalization constant, which is where the extra
factor of two comes from.

2 Report Noisy Max

When the domain is �nite, it is often more convenient to work with a another algorithm which behaves
very similarly to the exponential mechanism. The setup is the same—we have a set of outcomes Y (now
required to be �nite) and a score function with sensitivty at most 𝛿 for each outcome. The idea is to add
noise with expected magnitude Δ/𝜀 to each item’s score, independent of the number of possible outputs.
The algorithm returns the output with the highest noisy score:
Algorithm 2: Report-Noisy-Max 𝐴𝑅𝑁𝑀 (x, 𝑞(·; ·),Δ, 𝜀)
Input: Assume that 𝑞(𝑦; ·) is Δ-sensitive for every 𝑦 ∈ Y, and Y = {1, ..., 𝑑} is �nite

1 Select 𝑍1, ..., 𝑍𝑑 ∼ Exp(2Δ/𝜀) i.i.d. ;
2 return argmax𝑦∈{1,...,𝑑 }

(
𝑞(𝑦; x) + 𝑍𝑦

)
;

The distribution being used to generate noise is the exponential distribution Exp(𝜆), a distribution
over the nonegative real numbers [0, +∞) with density ℎ𝜆 (𝑦) = 1

𝜆
exp(−𝑦/𝜆).

This algorithm is generally much easier to implement than the exponential mechanism, since it does
not require explicitly computing any probabilities and can make use of standard libraries for sampling
from the exponential distribution. It satis�es a very similar guarantee to the exponential mechanism.
Exercise 2.1. Show that report noisy max is 𝜀-di�erentially private. [Hint: Suppose you �x (condition
on) the values of the noise 𝑍𝑢 = 𝑧𝑢 for all 𝑢 ≠ 𝑦. Compute and compare the probability that the outcome
will be 𝑦 under two di�erent data sets x and x′.]

In addition tomaking implementation easier, the utility analysis of report-noisy-max is more intuitive.
We just need to bound the probability that all 𝑑 noise random variables are small:
Lemma 2.2 (Tail Bounds for Exponential Distributions).

1. If 𝑍 ∼ Exp(𝜆), then Pr(𝑍 ≥ 𝑡𝜆) = 𝑒−𝑡 for all 𝑡 ≥ 0.
2. If 𝑍1, ..., 𝑍𝑑 ∼ Exp(𝜆) i.i.d., and 𝑍max = max𝑑𝑖=1 𝑍𝑖 then Pr(𝑍max > 𝜆(ln(𝑑) + 𝑡)) = 𝑒−𝑡 for all 𝑡 ≥ 0,

and E (𝑍max) ≤ 𝜆(ln(𝑑) + 1).
Note that if 𝑌𝑖 are independent Laplace random variables with 𝑌𝑖 ∼ Lap(𝜇𝑖 , 𝜆𝑖) and 𝑍𝑖 = |𝑌𝑖 − 𝜇𝑖 |,

then the 𝑍𝑖 ’s will be exponentially distributed with parameter 𝜆 and so Lemma 2.2 above applies.

Proof. The �rst part follows from a direct computation of the CDF:

𝑃𝑟 (𝑍 > 𝜆𝑡) =
∫
𝑦≥𝜆𝑡

1
𝜆
𝑒−𝑦/𝜆𝑑𝑦 = 1

𝜆

[
−𝜆𝑒−𝑦/𝜆

]∞
𝑦=𝜆𝑡

= 𝑒−𝑡 .

The second part follows by a union bound: the probability that any particular 𝑍𝑖 exceeds 𝜆(ln(𝑑) +
𝑡) is 𝑒−𝑡

𝑑
by part 1, so the probability that any of the 𝑍𝑖 ’s exceeds the bound is at most 𝑒−𝑡 . The

expectation calculation is essentially the same as in the proof the exponential mechanism’s utility
(Proposition 1.4). �

5

We can also use Lemma 2.2 to prove the following, which is essentially identical to what we proved
about the exponential mechanism.

Theorem 2.3. If 𝑞(𝑦; ·) is Δ-sensitive for every 𝑦 ∈ {1, ..., 𝑑}, then for every data set x inU𝑛 and every
𝑡 > 0, the output of report-noisy-max 𝑌 ← 𝐴𝑅𝑁𝑀 (x, 𝑠𝑐𝑜𝑟𝑒,Δ, 𝜀) satis�es

Pr
(
𝑞𝑚𝑎𝑥 (x) − 𝑞(𝑌, x) ≥

2Δ(ln(𝑑) + 𝑡)
𝜀

)
≤ 𝑒−𝑡 , where 𝑞𝑚𝑎𝑥 (x) =

𝑑max
𝑦=1

𝑞(𝑦; x) ,

and
E (𝑞𝑚𝑎𝑥 (x) − 𝑞(𝑌, x)) ≤

2Δ(ln(𝑑) + 1)
𝜀

.

Exercise 2.4. Prove Theorem 2.3 using the bounds in Lemma 2.2.

2.1 RNM, The Exponential Mechanism, and Gumbel Noise

Report Noisy Max with Laplace Noise has essentially the same guarantees as the exponential mechanism
(on the same discrete domain), but performs better in practice. It turns out that the expoential mechanism
is exactly equivalent to RNM with noise added from a di�erent distribution, the Gumbel distribution
with parameter 𝛽 = 2Δ

𝜀
.

Gumbel(𝛽) : P.d.f.:ℎ𝛽 (𝑦) = 1
𝛽
exp

(
−𝑥

𝛽
− 𝑒𝑥/𝛽

)
, C.d.f.: P

𝑌∼Gumbel(𝛽)
(𝑌 ≤ 𝑦) = 𝑒−𝑒

−𝑥/𝛽
. (9)

This equivalence is known in the machine learning literature as the “Gumbel max trick”, where the
exponential mechanism is called the Gibbs or softmax distribution. It turns out that RNM with Laplace
noise is equivalent to a di�erent process, “Permute and Flip” [MS20].

Exercise 2.5 (Gumbel Max Trick). Show that RNM with Gumbel noise with parameter 𝛽 = 2Δ
𝜀
generates

exactly the same distribution as the exponential mechanism.

Additional Reading

• McSherry and Talwar’s paper that de�ned the exponential mechanism [MT07]
• The “Permute-and-Flip” mechanism [MS20] is an equivalent algorithm to Report-Noisy-Max
[Ste20]. McKenna and Sheldon [MS20] argue that the algorithm is optimal among a natural class
of selection algorithms.

• Further optimizations on the exact privacy cost of the exponential mechanism can be found in
[DDR20, DWX+20].

References

[DDR20] Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal di�erential privacy composition
for exponential mechanisms. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research. PMLR, 2020.

[DWX+20] Zeyu Ding, Yuxin Wang, Yingtai Xiao, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
Free gap estimates from the exponential mechanism, sparse vector, noisy max and related
algorithms. arxiv [CoRR], abs/2012.01592, 2020.

6

[MS20] RyanMcKenna and Daniel R. Sheldon. Permute-and-�ip: A newmechanism for di�erentially
private selection. InAdvances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via di�erential privacy. In IEEE
Symposium on Foundations of Computer Science, FOCS ’07, 2007.

[Ste20] Thomas Steinke. Personal communication, November 2020.

7

